
Efficient Replication in Multi­regional Peer­Supported VoD
Systems

Yuval Rochman
Tel­Aviv University

Tel Aviv, Israel
yuvalroc@gmail.com

Hanoch Levy
Tel­Aviv University

Tel Aviv, Israel
hanoch@cs.tau.ac.il

Eli Brosh
Vidyo

New Jersey, USA

eli@vidyo.com

1. INTRODUCTION
Video-on-Demand (VoD) services have experienced an ex-

plosive growth in recent years, and are currently used by mil-
lions of users [3]. In traditional server-based VoD, end-user
terminals download video contents from a video provider
upon user’s request. Since server-based systems are non-
scalable and subject to server bottlenecks, a peer-supported
approach, where some of the contents is provided by peer
servers, has emerged as an effective solution for that prob-
lem. In this approach, peers (user terminals) use their stor-
age space and upload bandwidth to replicate video content
and serve the content to other peers when needed.
A fundamental design issue in peer-supported VoD sys-

tems is to determine the right replica placement (allocation)
strategy so as to make best use of the upload capacity of peer
servers. While the literature deals with P2P replica place-
ment, it is mainly geared towards file sharing systems. For
example, optimized the network bandwidth usage in replica-
tion; while [4] maximized file availability. These works pay
little attention to the bandwidth limitation of peers, a key
concern for VoD.
To this end, we consider a multi-region peer-supported

VoD service model where peer servers are located in dif-
ferent regions, and serving a video across regions is more
expensive than within a region. The demand distribution
can vary across the regions. Service can be granted by ded-
icated servers as a fall back, but at higher cost. The sys-
tem operations requires taking care of two tasks, which are
best described as if done in two stages: First, video replicas
are placed by the central server at the peer servers. Then,
video requests submitted by the users are assigned-to and
provided-by the proper peer servers. The multi-region model
is a natural fit for the network of a large content provider.
For example, cable operators use video hub offices in each
metropolitan area (all inter-connected) to serve the local
subscribers [1, 2].
The highly variable demand distribution (some videos are

highly popular while very many others are lowly popular,
following heavy tail distributions, see [3]) poses challenges
on the system designer regarding the number of replicas
that should be placed in the system; the use of a simple
assignment, like the proportional mean (proved to be opti-
mal placement under some conditions, see e.g. [5]) may be
quite inefficient as shown in the following simple example:
Consider a system with two video types, A and B. The de-

MAMA 2012 London, United Kingdom
Copyright is held by author/owner(s).

mand for A is deterministic 100 (mean=100), while for B
it is highly variable: 100k2 with probability 1/k and 0 with
probability 1− 1/k (mean is 100k). Assume the system has
room for 100 movie replicas. How many replicas should one
store of each movie? If one follows the proportional mean
placement one would place 100k/(1 + k) copies of B and
100/(1 + k) of A; The expected number of movies served
will be then 200/(k + 1). If, in contrast, one places 100
replicas of A , the expected number of movies served will be
100, a factor of (k + 1)/2 better than that of proportional
mean, a performance ratio that is unbounded. The problem
is further complicated since there are combinatorially many
allocation options to consider.

Our objective is to address this challenge and derive opti-
mal replica allocations that minimize the system-wide video
servicing costs under an arbitrary (stochastic) demand dis-
tribution. Our main result is that optimal replica placement
in multi-region environments is of max percentile nature,
namely, it is based on the tail distribution of the demand.
The approach proposed, termed Max Percentile Allocation,
and the results derived can be used either to practically man-
age peer-supported VoD systems or as theoretical bounds
to evaluate the relative performance of alternative simpler
approaches, typically based on the demand mean. Such a
bound is especially important in light of the unbounded per-
formance ratio demonstrated in the example given above.

Full theorem proofs are provided in a forthcoming paper.

2. MODEL ASSUMPTIONS

Region 1 Region 2 Region k

...

High Speed
Backbone

Peers

Regions

Central Server

1 2 s

...

k1 2 s 21 2 s 1

Figure 1: System topology

We consider a topology as depicted in Fig.1, consisting
of k regions and one central server. Each region contains
a set of client terminals that request movies and a set of
peer servers (in some cases one user terminal serves both as
a client and as a server) that store movie replicas and can
deliver them to the requesting clients. The set of movies
is enumerated by {1, 2, 3...,m}. Each movie can be repli-

cated, and the total number of replicas to be stored in the
system is s. The regions are connected to each other via a
high speed backbone network. Thus, each client can retrieve
movie replicas from its local region, or from a remote one.
An optimal replica placement algorithm will place replicas

across the regions, satisfying storage and bandwidth con-
straints at the peer servers, so as to minimize movie replica
servicing costs. Given that a peer server can store multi-
ple movies (typically a few), deriving the optimal solution is
NP-hard, even for the simple case of a single-region. We
thus restrict ourselves to consider allocations in environ-
ments where peers can store only a single movie. Such a
solution can be used to provide guidelines/heuristics on the
design of efficient allocations schemes for peer environments
with > 1 storage.
We assume the following conditions on the system:

• The system is managed by a central server which de-
cides on the replica allocation in the various regions1.
It also controls the assignment of user requests to peer
servers who have the requested content.

• At any given time, a peer server can only serve a single
video request.

• The demand (number of requests for a movie) is static
reflecting the demand at peak hours. The demand is
denoted by N j

i , which is a random variable denoting
the number of requests for movie imade by peer-clients
in region j. Note that {N j

i }
k
j=1 are not necessarily

identically distributed, and not necessarily indepen-
dent of each other.

The cost of serving a request is dependent on where the
request is granted. A request can be granted by a peer in its
own region, by a peer in a remote region, or by the central
server. In these cases the cost will be Cloc (local cost), Crem

(remote cost), Cser (central server), respectively. We assume
that the costs obey Cser ≥ Crem ≥ Cloc, reflecting local
costs cheaper than remote ones.
Denote gser, grem and gloc the number of requests granted

(served) from the server, from a remote region or from a local
region, respectively. The system request service cost is:

C = Cser · gser + Crem · grem + Cloc · gloc.

Let Lj
i , Li denote the number of movie i replicas placed

in region j and in the whole system, respectively; The set
L = {Lj

i} is called a movie replica allocation or simply an
allocation.
The problems addressed in this paper can be stated for-

mally as follows:

1. The assignment problem: Given an allocation, L =
{Lj

i}, a deterministic demand denoted by nj
i , and

the service cost parameters Cser, Crem, Cloc, assign (match)
the stored movie replicas to the demands as to mini-
mize the service cost C.

2. The allocation problem: Given the random movie de-
mand distributions {N j

i }, the service cost parameters
Cser, Crem, Cloc, and a matching algorithm solving the
assignment problem, determine the replica allocations

1The underlying assumption in this paper is that a sufficient
number of peer servers is available to store the replicas in
any region.

L = {Lj
i}, of each movie in each region2 as to minimize

the expected cost E[C].

3. TRANSFORMING THE COST FUNCTION
We transform the cost function into a revenue function as

done next. This is essential to facilitate the analysis.

Claim 3.1. The following holds:
(1) A matching algorithm M solves the assignment problem
iff M maximizes the function:

R = Rglo · gglo +Rloc · gloc, (1)

where we set Rglo
.
= Cser −Crem ≥ 0, Rloc

.
= Crem−Cloc ≥

0, and gloc denotes the number of requests granted locally
within the regions and gglo denotes the number of requests
granted by either local or remote regions.
(2) An allocation L solves the allocation problem iff the al-
location maximizes E(R).

We denote Eq. (1) to be the revenue objective function.

4. THE ASSIGNMENT PROBLEM
Algorithm 1 below, called the matching algorithm, is an

optimal and greedy algorithm tailored for the assignment
problem.

Algorithm 1 The matching algorithm

Require: An allocation of peer-servers ,L = {Lj
i} and de-

mand nj
i , i = 1, ...,m, j = 1, ..., k.

1: for all movie i do
2: for all region j do
3: Take min(Lj

i ,n
j
i) requests from the jth region of the

ith movie, and match them to min(Lj
i , n

j
i) peer-

servers in the jth region, containing the ith movie.

4: end for
5: Let nrem

i be the number of movie i requests, which we
did not match in Step 3, and let Lrem

i be the number
of unmatched movie i peer-servers.
Then, match the remaining min(nrem

i , Lrem
i) requests

to the remaining min(nrem
i , Lrem

i) peer-servers.
6: end for

An efficient implementation of the matching algorithm,
operating in linear time, O(s + n), is given in our article.
We prove that the algorithm derives an optimal assignment
between the demands and the peer-servers, and that it yields
the following expression for its revenue:

R = Rglo

m∑
i=1

min(Li, ni) +Rloc

m∑
i=1

k∑
j=1

min(Lj
i , n

j
i). (2)

5. UNLIMITED ALLOCATION PROBLEM
Using Claim 3.1 and Eq. (2), the unlimited problem can

be stated as the following maximization problem:

Find max
L

E(RL) such that

m∑
i=1

k∑
j=1

Lj
i ≤ s,

2The formulation accounts only for the number of replicas
in a region since the storage of each server is one, and thus
all servers in a region are interchangeable

where the revenue function is:

E(RL) =

Rglo

m∑
i=1

ENi(min(Li, Ni))+Rloc

m∑
i=1

k∑
j=1

E
N

j
i
(min(Lj

i , N
j
i)).

The greedy algorithm solving the Unlimited Allocation Prob-
lem is called GeMurMap (Generalized Multi Region Max
Percentile) and serves as the basis for solving the limited
problem (Section 6). The iterative algorithm will assign in
every step the ”best” movie to the ”best” region. More for-
mally, we define the following definitions:

Definition 1. (1) Let L be an allocation. Then themarginal
allocation of adding movie i0 to region j0 is allocation L′

such that L′j0
i0

= Lj0
i0

+ 1 and L′j
i = Lj

i for i ̸= i0 or j ̸= j0.
(2) The marginal revenue of adding movie i0 to region j0 is

δj0i0 (L) = E(RL′
)− E(RL).

The GeMurMap algorithm is given below:

Algorithm 2 GeMurMap algorithm

1: Initiate an allocation L = {Lj
i |1 ≤ i ≤ m, 1 ≤ j ≤ k}

such that Lj
i = 0 for every movie i and region j.

2: repeat
3: for all movie i0 do
4: for all region j0 do
5: Find (i0, j0) = argmax(i,j) δ

j
i (L).

6: Add replica i0 to region j0.
7: end for
8: end for
9: until

∑m
i=1 Li = s.

10: return the optimal allocation L.

In the paper we construct an equivalent very efficient al-
gorithm with complexity of O(s log sk + m logmk). This
results from the fact that every discrete non-negative ran-
dom variable satisfies E(X) =

∑∞
k=0 Pr(X ≥ k), implying

δji (L) = Rglo Pr(Ni ≥ Li+1)+Rloc Pr(N
j
i ≥ Lj

i +1), which
can be calculated in O(1).
For proving the algorithm optimality we will use the fol-

lowing definitions:

Definition 2. (1) Let L and L′ be two allocations. Then
the allocation are called equivalent iff the total number of
movie i replicas in those allocation is the same, i.e Li = L′

i.
(2) Let L be an allocation. Then L is called a global max-
ima allocation if for every equivalent allocation L′ we have

E(RL) ≥ E(RL′
).

The optimal allocation, which is the allocation with the
highest revenue, must be a global maxima allocation; other-
wise ,there is an equivalent allocation with a higher revenue.
In the article we prove the following theorem:

Theorem 5.1. If GeMurMap adds replica movie i0, then
the result allocation maximized

∑k
j=1 E(min(Lj

i0
, N j

i0
)) among

the equivalent allocations. Moreover, in every iteration in
GeMurMap we reach a global maxima allocation.

In the paper we show that the theorem follows from the fact
that the function f j

i (x) = Pr(N j
i ≥ x) is monotone. We

then use Theorem 5.1 and the fact that δji (L) (as well as

an important variation of δji (L)) is monotone decreasing to
prove that GeMurMap returns the optimal allocation.

6. THE LIMITED ALLOCATION PROBLEM
The Limited Allocation Problem is similar to the unlim-

ited one, with an additional restriction that the number of
servers is in region j is limited by sj . Formally:

Find max
L

E(RL) such that

m∑
i=1

Lj
i ≤ sj for 1 ≤ j ≤ k.

In the paper we prove that this problem can be solved via
a graph representation G = (V,E) minimum-cost flow prob-
lem with O(s3) vertices. The difficulty is that minimum-cost
flow algorithms operate in at least O(|V |2). And thus the
overall implementation is impractical (at least O(s6)).

Thus, we give a heuristic implementation of the allocation
algorithm. The algorithm, called Limited GeMurMap, is
based on the unlimited algorithm and is given next:

Algorithm 3 Limited GeMurMap algorithm

1: Initiate an allocation L = {Lj
i |1 ≤ i ≤ m, 1 ≤ j ≤ k}

such that Lj
i = 0 for every movie i and region j.

2: repeat
3: for all movie i0 do
4: for all region j0 such that

∑m
i=1 L

j
i ̸= sj do

5: Find (i0, j0) = argmax(i,j) δ
j
i (L).

6: Add replica i0 to region j0.
7: end for
8: end for
9: until

∑m
i=1 Li = s.

10: return the optimal allocation L.

We give an equivalent implementation of the algorithm
in O(s log sk + m logmk). Although we show that the al-
gorithm is not optimal, we can prove that if the regions
are ”symmetrical” (i.e {N j

i |1 ≤ j ≤ k} are identically dis-
tributed for all movie i and sj = s/k for every region j) then
the algorithm returns the optimal allocation.

Other results: In our work we further deal with: 1)
Multiple Hierarchies, 2) online behavior, 3) Heuristics for
multiple movies in a server, and 4) optimality properties.

7. REFERENCES
[1] M. S. Allen, B. Y. Zhao, and R.Wolski. Deploying

Video-on-Demand Services on Cable Networks. In
ICDCS, Toronto, Canada, June 2007.

[2] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee,
and K. K. Ramakrishnan. Optimal content placement
for a large-scale vod system. In ACM CoNEXT,
Philadelphia, USA, Dec 2010.

[3] M. Cha, H. Kwak, P. Rodriguez, Y. Y. Ahn, and
S. Moon. I Tube, You Tube, Everybody Tubes:
Analyzing the World’s Largest User Generated Content
Video System. In ACM Internet Measurement
Conference, New York, NY, USA, October 2007.

[4] J. Kangasharju, K. W. Ross, and D. A. Turner.
Optimizing file availability in peer-to-peer content
distribution. In IEEE INFOCOM, Anchorage, Alaska ,
USA, May 2007.

[5] S. Tewari and L. Kleinrock. Proportional replication in
peer-to-peer networks. In IEEE INFOCOM, Barcelona,
Spain, April 2006.

